
  AIAC-2005-054 
 
 

FLUTTER AND VIBRATION OF A HINGELESS HELICOPTER BLADE IN HOVER 
 

Metin O. Kaya1 
 

Istanbul Technical University 
Faculty of Aeronautics and Astronautics 

Istanbul, Turkey 
 
 

ABSTRACT 
 
In this study, flutter stability and vibration of a 
uniform bearingless rotor blade in hover with 
structural coupling is analysed. The blade is 
modeled as an Euler-Bernoulli beam. The partial 
differential equations of motion are derived using the 
Hamilton’s principle and solved using the Differential 
Transform Method, DTM. The computer package 
Mathematica is used to code the resulting 
expressions and to calculate the natural frequencies. 
The effects of the pitch angle and the rotation speed 
ratio are investigated and the results are compared 
with the open literature. 
 
INTRODUCTION  

A helicopter is an aircraft that uses large 
diameter rotary wings to provide lift, propulsion, and 
control. Aerodynamic forces on a helicopter blade 
are generated by the relative velocity of the rotating 
wings with respect to air.  
 

Vibratory loads on helicopters arise from a variety 
of sources such as the main rotor system, the 
aerodynamic interaction between the rotor and the 
fuselage, the tail rotor, the engine and the 
transmission. However, the most significant source 
of vibration in a helicopter is the main rotor because 
of the unsteady aerodynamic environment acting on 
highly flexible rotating blades. The reduction of 
vibration levels in helicopters below acceptable limits 
is one of the main problems facing rotorcraft 
designers. Vibrations lead to passenger discomfort, 
pilot fatigue, increased noise levels, degradation of 
weapon effectiveness, and premature failure of 
aircraft parts.  
 

The field of helicopter aeroelasticity has been a 
very active area of research during the last 40 years. 
A comprehensive review paper about this area has 
been published recently [5]. 

 
In this study the blade is modeled as a slender, 

deformable beam composed of isotropic and 
homogeneous material. The Euler-Bernoulli 
hypothesis is assumed to apply and the Blade 
Element Theory is used to obtain aerodynamic 
loadS. A semi analytical-numerical technique  
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called the Differential Transform Method, DTM is 
used to solve the equations. The concept of this 
method was first introduced by Zhou [9] in 1986 and 
it was used to solve both linear and nonlinear initial 
value problems in electric circuit analysis. The 
method can deal with nonlinear problems so Chiou 
[8] applied the Taylor transform to solve nonlinear 
vibration problems. Additionally, the method may be 
used to solve both ordinary and partial differential 
equations. Jang et al. [7] applied the two-
dimensional differential transform method to the 
solution of partial differential equations. Hassan [6] 
adopted the differential transformation method to 
solve some eigenvalue problems. Since previous 
studies have shown that the differential transform 
method is an efficient tool to solve non-linear or 
parameter varying systems, recently it has gained 
much attention by several researchers [1-4]. 
 
FORMULATION  

Aerodynamic Modelling 
 

The elemental lift and drag forces can be written 
from simple strip theory. The blade is seperated into 
several stations and the cross-section of the blade at 
one of the stations and the velocity components, 
forces and angles at this cross-section are shown in 
Fig.1.  

Figure 1. Velocity components, forces and angles at 
the blade cross section 
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Here L  is the lift force, D  is the drag force, zF  

is the vertical force, yF  is the inplane force. pU , 

TU  and U  are the perpendicular velocity 
component, tangential velocity component and 
resultant velocity, respectively. θ , ϕ  and α  
represent, the geomentric pitch angle, the induced 
inflow angle and the effective angle of attack, 
respectively. 

 
Some simplifying assuptions used in the 

formulation of aerodynamic forces are as follows: 
 

1. Since the tangential velocity component is much 
greater than the vertical velocity component 
 

pT UU  >>  and TTP UUUU ≈+= 22  
 
2. Since inflow angle is small, 

TP UU=≅ ϕϕtan . Therefore, the effective angle 
of attack can be written as 
3.  

T

p

U
U

−≅−= θϕθα                                             (1) 

 
The expressions for the sectional lift and the 

sectional drag forces are given by 
 

αρρ caUcCUL Tl
22

2
1

2
1

==                    (2) 

 

a
C

caUcCUD d
Td
22

2
1

2
1 ρρ ==     (3) 

 
Here; ρ  is tha air density, a  is the lift curve slope, 

c  is the chord length, lC  is the sectional lift 

coefficient and dC  is the sectional drag coefficient.  
 

Considering the assumptions and Fig.1, the 
vertical and the inplane forces can be written as 
follows: 
 

ϕϕϕ dDdLdDSindLCosdFz −≅−=              (4) 
 

)()( dDdLdDCosdLSindFy +−≅+−= ϕϕϕ   (5) 
 
Substituting Eqs.(2) and (3) into Eqs.(4) and (5), we 
get, 
 

( )[ ]dxUUaCUacdF TpdTz /1
2

2 +−= θρ
         (6) 

 

[ ]dxUaCUUUacdF PdTTPy
22 /

2
−+−= θρ

    (7) 

Incorporating the airfoil flap and lead 
displacements (v,w) in the rotating coordinate 
system, the relative velocities become 
 

vxUT &+Ω=            (8) 

( )( )φθβυ +Ω+−Ω++= xvvwU pciP &&     (9) 
 

Substituting Eqs. (8) and (9) into the force 
equations and discarding second order products of 
displacement velocities such as 2v& , 2w& , wv && , the 
final equations are obtained. 
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Ω−= φρ

φ
&xcacM
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    (12) 

Here, φM  is the aerodynamic moment, pcβ  is the 

precone angle, Ω  is the constant rotation speed, φ  

is the torsion angle and iv  is the induced inflow 
velocity. 

Structural Modelling 
 

In this section, Hamilton’s principle is used to 
derive the partial differential equations of motion. In 
Fig.2, rotor blade cross-section before and after 
deformation is shown. 
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Figure 2. Rotor blade cross-section before and after 
deformation 

By applying Hamilton’s principle, 
 

∫ =+−ℑ
2

1

0)(
t

t

dtWU δδδ     (13) 

 
where 0== vw δδ at 1t  and 2t  
 
differential equations of motion are derived as 
follows 
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Here, Ak  is the blade cross section mass radius 

of gyration, 1mk  and 2mk  are the principal mass radii 

of gyration, m  is the mass per unit length and T  is 
the centrifugal force that varies along the spanwise 
direction and which is expressed as follows 

 








 −
+−Ω=+Ω= ∫ 2

)()()(
22

22 xLxLrAdxxrAxT
L

x

ρρ  (17) 

 
As a byproduct of the Hamiltonian formulation, 

the associated natural boundary conditions which 
give the expressions for shear forces and bending 
moments are also obtained. These boundary 
conditions are 
 
at 0=x , 0=== φwv                            (18) 
 

0=′=′ wv  
at Rx = , 0=′φ                 (19) 

0=′′=′′ wv  
0=′′′=′′′ wv  

 
STABILITY ANALYSIS 
 

In order to perform the stability analysis, the 
displacements are written as the summation of 
steady and perturbation terms,ie., 
 

),()(),( 0 txvxvtxv +=                               (20) 
 

),()(),( 0 txwxwtxw +=                                    (21) 
 

),()(),( 0 txxtx φφφ +=                                      (22) 
 
Substituting Eqs.(20)-(22) into Eqs.(14)-(16), the 
perturbation equations are obtained as follows  
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For the flutter case, a sinusoidal variation of 
),( txv , ),( txw  and ),( txφ  with a circular natural 

frequency ω  is assumed and the functions are 
approximated as  

 
( ) ( ) tiexVtxv ω=,                                              (26) 

 
( ) ( ) tiexWtxw ω=,                                      (27) 

 
( ) ( ) tiextx ωφφ =,                                      (28) 

 
Substituting Eqs.(26)-(28) into Eqs.(23)-(25) results 
in the following expresions 
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Dimensionless Parameters 

The dimensionless parameters that are used in 
order to simplify the equations of motion can be 
introduced as follows 

R
x

=ξ , 
R
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=δ , 
m
acRργ 3

= , 
R
i

i Ω
=
ν

λ ,  

R
cc = , 

R
ωω = , ( )

R
VV =ξ , ( )

R
WW =ξ  (32) 

The centrifugal force, T , can be expressed in the  

nondimensional form by using the first two 
dimensionless parameters 
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Using these parameters and Eq.(33), the Eqs.(29)-
(31) can be given by 
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where the dimensionless coefficients are 
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The dimensionless boundary conditions are 

at 0=ξ , 0=== φWV    (37) 
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THE DIFFERENTIAL TRANSFORM METHOD 

 The differential transform method is a 
transformation technique based on the Taylor series 
expansion and it is a useful tool to obtain analytical 
solutions of the differential equations. In this method, 
certain transformation rules are applied and the 
governing differential equations and the boundary 
conditions of the system are transformed into a set 
of algebraic equations in terms of the differential 
transforms of the original functions and the solution 
of these algebraic equations gives the desired 
solution of the problem. It is different from high-order 
Taylor series method because Taylor series method 
requires symbolic computation of the necessary 
derivatives of the data functions and is expensive for 
large orders. The differential transform method is an 
iterative procedure to obtain analytic Taylor Series 
solutions of differential equations.  
 

Consider a function ( )xf  which is analytic in a 

domain D and let 0xx =  represent any point in D. 

The function ( )xf  is then represented by a power 

series whose center is located at 0x . The differential 

transform of the function ( )xf  is given by 
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where ( )xf  is the original function and [ ]kF  is the 
transformed function. The inverse transformation is 
defined as 
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Combining Eqs. (42) and (43), we get 
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Considering Eq.(44), it is noticed that the concept 

of differential transform is derived from Taylor series 
expansion. However, the method does not evaluate 
the derivatives symbolically. 

 
In actual applications, the function ( )xf  is 

expressed by a finite series and Eq. (44) can be 
written as follows 
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which means that  
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∑
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k
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xf is negligibly  

small. Here, the value of m  depends on the 
convergence of the natural frequencies. 
 

Theorems that are frequently used in the 
transformation procedure are introduced in Table 1 
and theorems that are used for boundary conditions 
are introduced in Table 2. 
 
Table 1. Basic theorems of DTM 
 

Original 
Function DTM 
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Table 2. DTM theorems for boundary conditions 
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FORMULATION WITH DTM 

In the solution step, the Differential Transform 
Method is applied to Eqs.(34)-(36) by using the 
theorems introduced in Table 1 and the following 
expressions are obtained. 
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Considering the theorems in Table 2 and 
Eqs.(37) and (38), the following expressions can be 
written and these are used in the computer program 
written to make the related calculations. 

 
[ ] [ ] [ ] [ ] 01100 ==== WVWV  

 
[ ] 22 vV = ,   [ ] 33 vV = ,   [ ] 22 wW = ,   [ ] 33 wW =  

 
[ ] 00 =φ ,   [ ] 11 φφ =  

where 2v , 3v , 2w , 3w  and 1φ  are arbitrary 
constants. 

 

RESULTS AND DISCUSSIONS 

 The computer package Mathematica is used to 
write a computer program for the expressions 
obtained using DTM. The results are compared with 
the ones in Refs.[10]-[11] and a very good 
agreement with the figures in these references is 
obtained. 
 

When the aerodynamic terms in the rotor blade 
equations are eliminated, the resulting perturbation 
solutions provide the rotating natural frequencies of 
the rotor blade motion. For untwisted blades at zero 
pitch angle ( )0=θ , the equations of motion are 
uncoupled and the resulting natural frequencies are 
the uncoupled natural frequencies. In the calculation 
of the rotating natural frequencies, the nonrotating 
natural frequencies can be used. In Figs.3 (a)-(c), 
the relations between these frequencies are shown. 

 
In Fig.4(a)-(b), the first two flap and first two lead-

lag uncoupled rotating frequencies are given. In 
Fig.4(a), values for a soft inplane rotor and in 
Fig.4(b), values for a stiff inplane rotor are 
introduced. For the soft inplane rotors, the first 
rotating lead-lag frequency is less than the nominal 
rotational frequency of the rotor while for the stiff 
inplane rotors, the lead-lag frequency is greater than 
the nominal rotational frequency. In this figure, 0Ω  

is the nominal angular velocity and NRω  is the 
natural frequency that is made dimensionless with 
respect to the nominal angular velocity. 
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Figure 3(a) Rotating natural flap frequency versus 
nonrotating flap frequency ( 0=θ  ) 

 

0.00 0.40 0.80 1.20 1.60
Nonrotating Fundamental Lag Frequencies

0.00

0.40

0.80

1.20

1.60

R
ot

at
in

g 
Fu

nd
am

en
ta

l L
ag

 F
re

qu
en

ci
es

 
 

Figure 3(b) Rotating natural lag frequency versus 
nonrotating lag frequency( 0=θ  ) 
 
 



AIAC-2005-054   Kaya & Özdemir 

8 
Ankara International Aerospace Conference 

0.00 4.00 8.00 12.00
Nonrotating Fundamental Torsion Frequencies

4.00

8.00

12.00
R

ot
at

in
g 

Fu
nd

am
en

ta
l T

or
si

on
 F

re
qu

en
ci

es

 
 
Figure 3(c) Rotating natural torsion frequency 
versus nonrotating torsion  frequency ( 0=θ , 

( ) 5.12 =mA kk , 0=mA kk  ) 
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Figure 4(a). Variation of the first two uncoupled 
natural frequencies with respect to the rotor angular 
velocity ( 6.0== NRNR ξβ ωω  ). 
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Figure 4(b). Variation of the first two uncoupled 
natural frequencies with respect to the rotor angular 
velocity ( 6.0=NRβω , 5.1=NRξω  ). 
 

In this study, linear formulation is considered. 
Thus, the torsion motion becomes uncoupled with 
the flapping and lead-lag motions. However, the 
flapping and lead-lag motions influence each other. 
This case is introduced in Fig.5 where the dynamic 
stability characteristics of the flap and lead-lag 
bending motions are introduced. The results are 
given in the root locus form for the first flap and lead-
lag modes as the blade pitch angle is increased from 
zero to 0.5 rad. The figure includes both soft inplane 
and stiff inplane configurations. As it can be noticed 
in Fig.5, the damping of the flap mode (real axis 
component) is high while the damping of the lag 
mode is low because the lift forces associated with 
the flapping velocity produce large aerodynamic 
damping on the flap mode while the drag forces 
associated with the lead-lag velocity produce small 
damping on the lead-lag mode. However, the lag 
mode damping increases with the increasing pitch 
angle and instability does not occur (none of the real 
axis components are positive). 
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Figure 5. Root locus for the dynamic stability 
characteristics of the flap and lead-lag bending motions.( 

5=γ , 05.0=σ , 6.0=NRβω , 01.0=dC , π2=a , 

40π=Rc  ) 
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